

Biodiversité, gènes & communautés

o G e C o

Which method to assess embolism resistance?

A comparison of 4 techniques on 5 native Patagonian species

Martinez-Meier A³, Gyenge J²⁻⁶, Fernández ME²⁻⁶, Rozenberg P⁷

Mail: nico09.martin@gmail.com

Introduction

- Vulnerability curve, the relationship between the embolism estimate and the xylem potential, describes plant vulnerability to drought induced cavitation, a crucial trait that correlates with several plant functions and adaptive strategies.
- Several techniques have been developed to build VC [1], among them :
 - \checkmark The *classic bench dehydration* (bench) consists in measuring concurrently water potential and the loss of hydraulic conductance at different dehydration steps on samples freely dehydrating in the air.
 - The *pneumatic bench dehydration* (pneumatic) consists in assessing concurrently water potential and an estimate of air volume (AV) that progresses into a branch while it dehydrates in the air.
 - The *air injection* method consist in applying positive pressures to induce embolism and concurrently measuring the loss of hydraulic conductance.
 - The *Cavitron* uses centrifugation to generate negative pressure and embolism. Conductivity is assess during the spinning procedure thanks to a hydrostatic gradient.
- Previous studies showed that methods to perform VC can be subjected to important artifacts that generally underestimate cavitation resistance [1]. It is important to provide rigorous comparison of Bench, Cavitron and Air Injection. The pneumatic still needs independent evaluation.

OBJECTIVE : Comparing four methods to assess vulnerability to cavitation on six native Patagonian species

Material, methods and checkings

Plant materials size and sampling :

Measurements were performed on the same 5 individuals per species during the same month. Samples were collected in the same area at max (50 km from Bariloche, Argentina)

Species	Nothofagus antartica	Nothofagus pumilio	Lomatia hirsuta	Maytenus boria	Austrocedrus chilensis
Local name	Ñire	Lenga	Radal	Maiten	Cipres
Vessel length	19	16	12	22	Tracheids

VC construction methods :

 \succ The Bench Dehydration was applied to angiosperms by taking all precautions [ref]. For conifer PLC was measured gravimetrically on different samples of a same branch.

The Pneumatic was applied on samples at least 3 times larger than maximum vessel length. Air volume was repeatedly measured along with water potential during branch dessication ^[2]

> The Cavitron was applied with two 0.9 different rotor size. For Maitenus, 0.8 species with longest vessel we report $_{c}$ ^{0.7} double ^{do} doubtfull (R or shapes

For each species the fitted vulnerability curve and confident interval (95%) are represented for all methods. The confidence interval could not be computed for the bench. The plot evidence similar pattern for all methods for a given species except for the pneumatic method

For each species the distribution of individual P_{50} are shown for all methods with different colors. The outlier obtained with the pneumatic on cipres is indicated by an arrow.

sigmoids) that could be corrected by $\overline{3}$ 0.4 using longer rotors. Other species 0.3 0.2 showed similar results with the two 0.1 rotor sizes.

> The Air injection was applied with the semi-automatized device called *Embolitron.* It was necessary to position the chamber on the middle of 0.6 the sample and to use samples longer .0 ta ≥ 0.4 than maximum vessel length with tiny Otherwise diameters. strong a overestimation of embolism resistance was obtained. This is probably due to a vessel length-type artifact.

Relationship between *Slope* and P_{50} of the vulnerability curve among species obtained with each method. The outlier obtained with the pneumatic on cipres is indicated by an arrow.

Discussion & Conclusion

- After ensuring there was no open-vessels artifact in *Cavitron* and *Embolitron* measurements, all methods yielded similar ranking of embolism resistance among angiosperm species and consistent pattern of slope vs P_{50} for angiosperm.
- Open-vessel artifact can lead to an overestimation of embolism resistance in *Embolitron*

0.9

0.8

0.7

0.3

0.2

0.1

0

- For Cipres all methods yielded similar vulnerability curves, except the Pneumatic which strongly underestimated of P_{50} qnd overestimated the *slope*.
- For some species with high P_{50} significant differences was punctually obtained (up to 30% for Lenga)

TOPWOOD

[1] Cochard, H., Badel, E., Herbette, S., Delzon, S., Choat, B. & Jansen, S. (2013). Methods for measuring plant vulnerability to cavitation: a critical review. J. Exp. Bot., 64, 4779–4791 ¹ INRA, UR629 Ecologie des Forêts Méditerranéennes (URFM), Avignon, France [2] Pereira, L., Oliveira, R.S., Pereira, L., Bittencourt, P.R.L., Oliveira, R.S., Junior, M.B.M., et al. (2016). Plant pneumatics : stem air flow is related to embolism – new perspectives on methods in plant hydraulics 2 CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas - Argentina Methods Plant pneumatics : stem air flow is related to embolism – new perspectives on methods in plant hydraulics. *New Phytol.*, 357–370 ³ INTA, Instituto Nacional de Tecnología Agropecuaria, Ecología Forestal, EEA Bariloche, Argentina

⁴ INRA, UMR0547 Physique et physiologie Intégratives de l'Arbre en environnement Fluctuant (PIAF) Clermont-Ferrand, France

⁵ INRA, UMR1202 Biodiversité Gènes et Communautés France (BIOGECO) Bordeaux, France

⁶ INTA, Instituto Nacional de Tecnología Agropecuaria, Ecología Forestal, EEA Balcarce-Tandil, Argentina

INRA, UR0588 Amélioration Génétique et Physiologie Forestières (AGPF), Orléans, France